3.2376 \(\int \frac{(1-2 x)^{3/2}}{(2+3 x)^2 (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=79 \[ \frac{(1-2 x)^{3/2}}{(3 x+2) \sqrt{5 x+3}}-\frac{33 \sqrt{1-2 x}}{\sqrt{5 x+3}}+33 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right ) \]

[Out]

(-33*Sqrt[1 - 2*x])/Sqrt[3 + 5*x] + (1 - 2*x)^(3/2)/((2 + 3*x)*Sqrt[3 + 5*x]) + 33*Sqrt[7]*ArcTan[Sqrt[1 - 2*x
]/(Sqrt[7]*Sqrt[3 + 5*x])]

________________________________________________________________________________________

Rubi [A]  time = 0.0220951, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {94, 93, 204} \[ \frac{(1-2 x)^{3/2}}{(3 x+2) \sqrt{5 x+3}}-\frac{33 \sqrt{1-2 x}}{\sqrt{5 x+3}}+33 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

(-33*Sqrt[1 - 2*x])/Sqrt[3 + 5*x] + (1 - 2*x)^(3/2)/((2 + 3*x)*Sqrt[3 + 5*x]) + 33*Sqrt[7]*ArcTan[Sqrt[1 - 2*x
]/(Sqrt[7]*Sqrt[3 + 5*x])]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2}}{(2+3 x)^2 (3+5 x)^{3/2}} \, dx &=\frac{(1-2 x)^{3/2}}{(2+3 x) \sqrt{3+5 x}}+\frac{33}{2} \int \frac{\sqrt{1-2 x}}{(2+3 x) (3+5 x)^{3/2}} \, dx\\ &=-\frac{33 \sqrt{1-2 x}}{\sqrt{3+5 x}}+\frac{(1-2 x)^{3/2}}{(2+3 x) \sqrt{3+5 x}}-\frac{231}{2} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{33 \sqrt{1-2 x}}{\sqrt{3+5 x}}+\frac{(1-2 x)^{3/2}}{(2+3 x) \sqrt{3+5 x}}-231 \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=-\frac{33 \sqrt{1-2 x}}{\sqrt{3+5 x}}+\frac{(1-2 x)^{3/2}}{(2+3 x) \sqrt{3+5 x}}+33 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0327873, size = 65, normalized size = 0.82 \[ 33 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )-\frac{\sqrt{1-2 x} (101 x+65)}{(3 x+2) \sqrt{5 x+3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

-((Sqrt[1 - 2*x]*(65 + 101*x))/((2 + 3*x)*Sqrt[3 + 5*x])) + 33*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 +
5*x])]

________________________________________________________________________________________

Maple [B]  time = 0.012, size = 154, normalized size = 2. \begin{align*} -{\frac{1}{4+6\,x} \left ( 495\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+627\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+198\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +202\,x\sqrt{-10\,{x}^{2}-x+3}+130\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}{\frac{1}{\sqrt{3+5\,x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x)

[Out]

-1/2*(495*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+627*7^(1/2)*arctan(1/14*(37*x+20)*7^(
1/2)/(-10*x^2-x+3)^(1/2))*x+198*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+202*x*(-10*x^2-x+3)
^(1/2)+130*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)/(2+3*x)/(-10*x^2-x+3)^(1/2)/(3+5*x)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 2.09829, size = 124, normalized size = 1.57 \begin{align*} -\frac{33}{2} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{202 \, x}{3 \, \sqrt{-10 \, x^{2} - x + 3}} - \frac{317}{9 \, \sqrt{-10 \, x^{2} - x + 3}} + \frac{49}{9 \,{\left (3 \, \sqrt{-10 \, x^{2} - x + 3} x + 2 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="maxima")

[Out]

-33/2*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 202/3*x/sqrt(-10*x^2 - x + 3) - 317/9/sqrt(-
10*x^2 - x + 3) + 49/9/(3*sqrt(-10*x^2 - x + 3)*x + 2*sqrt(-10*x^2 - x + 3))

________________________________________________________________________________________

Fricas [A]  time = 1.49527, size = 247, normalized size = 3.13 \begin{align*} \frac{33 \, \sqrt{7}{\left (15 \, x^{2} + 19 \, x + 6\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 2 \,{\left (101 \, x + 65\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{2 \,{\left (15 \, x^{2} + 19 \, x + 6\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="fricas")

[Out]

1/2*(33*sqrt(7)*(15*x^2 + 19*x + 6)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x -
 3)) - 2*(101*x + 65)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(15*x^2 + 19*x + 6)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**2/(3+5*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.55418, size = 340, normalized size = 4.3 \begin{align*} -\frac{33}{20} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{11}{10} \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )} - \frac{154 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}}{{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="giac")

[Out]

-33/20*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/
(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 11/10*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/s
qrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 154*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5)
- sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) -
 sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)